An Adaptive Low-Cost GNSS/MEMS-IMU Tightly-Coupled Integration System with Aiding Measurement in a GNSS Signal-Challenged Environment

نویسندگان

  • Qifan Zhou
  • Hai Zhang
  • You Li
  • Zheng Li
چکیده

The main aim of this paper is to develop a low-cost GNSS/MEMS-IMU tightly-coupled integration system with aiding information that can provide reliable position solutions when the GNSS signal is challenged such that less than four satellites are visible in a harsh environment. To achieve this goal, we introduce an adaptive tightly-coupled integration system with height and heading aiding (ATCA). This approach adopts a novel redundant measurement noise estimation method for an adaptive Kalman filter application and also augments external measurements in the filter to aid the position solutions, as well as uses different filters to deal with various situations. On the one hand, the adaptive Kalman filter makes use of the redundant measurement system's difference sequence to estimate and tune noise variance instead of employing a traditional innovation sequence to avoid coupling with the state vector error. On the other hand, this method uses the external height and heading angle as auxiliary references and establishes a model for the measurement equation in the filter. In the meantime, it also changes the effective filter online based on the number of tracked satellites. These measures have increasingly enhanced the position constraints and the system observability, improved the computational efficiency and have led to a good result. Both simulated and practical experiments have been carried out, and the results demonstrate that the proposed method is effective at limiting the system errors when there are less than four visible satellites, providing a satisfactory navigation solution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monocular Camera/IMU/GNSS Integration for Ground Vehicle Navigation in Challenging GNSS Environments

Low-cost MEMS-based IMUs, video cameras and portable GNSS devices are commercially available for automotive applications and some manufacturers have already integrated such facilities into their vehicle systems. GNSS provides positioning, navigation and timing solutions to users worldwide. However, signal attenuation, reflections or blockages may give rise to positioning difficulties. As oppose...

متن کامل

High-Accuracy Positioning in Urban Environments Using Single-Frequency Multi-GNSS RTK/MEMS-IMU Integration

The integration of Global Positioning System (GPS) real-time kinematics (RTK) and an inertial navigation system (INS) has been widely used in many applications, such as mobile mapping and autonomous vehicle control. Such applications require high-accuracy position information. However, continuous and reliable high-accuracy positioning is still challenging for GPS/INS integration in urban enviro...

متن کامل

Tightly-Coupled Integration of Multi-GNSS Single-Frequency RTK and MEMS-IMU for Enhanced Positioning Performance

Dual-frequency Global Positioning System (GPS) Real-time Kinematics (RTK) has been proven in the past few years to be a reliable and efficient technique to obtain high accuracy positioning. However, there are still challenges for GPS single-frequency RTK, such as low reliability and ambiguity resolution (AR) success rate, especially in kinematic environments. Recently, multi-Global Navigation S...

متن کامل

MEMS IMU Based INS/GNSS Integration: Design Strategies and System Performance Evaluation

Application of MEMS sensor in navigation is increasingly becoming important due to its advantages in terms of the quickly improving precision, robustness, high dynamic response and lower costs of development and usage. Moreover by employing the optimal estimation technique of Kalman filtering, the performance of MEMS based INS has been greatly enhanced by the integration of GNSS. This paper foc...

متن کامل

Signals of Opportunity Aided Inertial Navigation

A signal of opportunity (SOP)-aided inertial navigation system (INS) framework is presented and studied. The following problem is studied. A mobile receiver with access to global navigation satellite system (GNSS) signals is aiding its onboard INS with GNSS pseudoranges. While navigating, the receiver draws pseudorange observations on ambient unknown terrestrial SOPs and estimates the SOPs’ sta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2015